If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-112x+98=0
a = 16; b = -112; c = +98;
Δ = b2-4ac
Δ = -1122-4·16·98
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-56\sqrt{2}}{2*16}=\frac{112-56\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+56\sqrt{2}}{2*16}=\frac{112+56\sqrt{2}}{32} $
| 6(5-2v=-4(3v=1) | | 3m2+4m+1=0 | | 3x+.75=5.88 | | 32=-2(23-z)+3(z-4) | | 1/3p+3=114 | | 210x=41790 | | 22-4y=7 | | 8x+3(60)=6x+6.60 | | 2×-2=x+10 | | 24/6=1/2x | | 9^{7x+4}=5 | | 5x-2=13x-5 | | x+1/3x=90 | | 9=v+8v | | -9+6=-3(3-2x) | | 15=10w-7w | | x2+15x+54=0 | | 5(k+3)-(4k-4)=-8 | | 4(9+3x)-12=6 | | 17h+2=34 | | (x+100)=118 | | (x-9)^2=5 | | 7d+63=7{d+63} | | |6x-5|=15 | | 10.2/9.6=x/8 | | x+2x^2−4=−7x+6 | | (x+20)=118 | | 2x(-4x+2)=-5 | | 9x+3.6=2.5x+3 | | 12w^2+1w-6=0 | | x=10=12 | | 9x+3.6=3(-8+x)+2 |